Principal Investigator/Researcher
Mehdi Ahmadian and Karan Kothari (student)
Project Description
The primary purpose of this study is to perform accurate dynamic measurements on a scaled roller rig designed and constructed by Virginia Tech and the Federal Railroad Administration (VT-FRA Roller Rig). The study also aims at determining the effect of naturally generated third-body layer deposits (because of the wear of the wheel and/or roller) on creep or traction forces. The wheel-rail contact forces, also referred to as traction forces, are critical for all aspects of rail dynamics. These forces are quite complex and they have been the subject of several decades of research, both in experiments and modeling. The primary intent of the VT-FRA Roller Rig is to provide an experimental environment for more accurate testing and evaluation of some of the models currently in existence, as well as evaluate new hypothesis and theories that cannot be verified on other roller rigs available worldwide.
The Rig consists of a wheel and roller in a vertical configuration that allows for closely replicating the boundary conditions of railroad wheel-rail contact via actively controlling all the wheel-rail interface degrees of freedom: angle of attack, cant angle, normal load and lateral displacement, including flanging. The Rig has two sophisticated independent drivelines to precisely control the rotational speed of the wheels, and therefore their relative slip or creepage. The Rig benefits from a novel force measurement system, suitable for steel on steel contact, to precisely measure the contact forces and moments at the wheel-rail contact.
Experimental studies will be conducted on the VT – FRA Roller Rig that involved varying the angle of attack, wheel and rail surface lubricity condition (i.e., wet vs. dry rail), and wheel wear, to study their effect on wheel-rail contact mechanics and dynamics. The wheel-rail contact is in between a one-fourth scale AAR-1B locomotive wheel and a roller machined to US-136 rail profile. A quantitative assessment of the creep-creepage measurements, which is an important metric to evaluate the wheel-rail contact mechanics and dynamics, is presented. A MATLAB routine is developed to generate the creep-creepage curves from measurements conducted as part of a broad experimental study. The shape of the contact patch and its pressure distribution have been discussed. An attempt is made to apply the results to full-scale wheels and flat rails. The research results will help in the development of better simulation models for non-Hertzian contact and non-linear creep theories for wheel-rail contact problems that require further research to more accurately represent the wheel-rail interaction.
Implementation of Research Outcomes
The system is promising to be implemented in the field.
Impacts/Benefits of Implementation
Wheel of rail car will be measured more accurately, which is important for vehicle production and inspection.
Final Report
Outputs:
1 conference paper, 1 Thesis
• Ahmad Radmehr, Karan Kothari, Mehdi Ahmadian, Evaluating the Effect of Natural Third Body Layers on Friction Using the Virginia Tech Roller Rig , Proceeding of Joint Rail Conference, Paper No: JRC2019-1292, V001T10A004; 5 pages, , 2019.
• Karan Kothari, Accurate Wheel-rail Dynamic Measurement using a Scaled Roller Rig, Thesis of Mechanical Engineering at Virginia Tech, 2018.